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Oscillatory pipe flows of a yield-stress fluid
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Oscillatory pipe flows of aqueous Carbopol solutions are investigated both
experimentally and analytically. Using the PIV technique, the velocity profiles are
measured and compared with the numerical solutions based on an elasto-viscoplastic
rheological model, in which an elastic spring is serially connected to a regularized
Bingham viscoplastic model. The rheological parameters, such as shear modulus of
elasticity, yield stress and viscosity, are estimated from steady-shear measurements.
Good agreement between the experiments and the model results is observed. It is
apparent that the elasticity plays an important role in the unsteady flows of the soft
yield-stress fluid studied herein.
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1. Introduction
A muddy seabed can cause significant wave attenuation (Gade 1958; Minirani &

Kurup 2007). Better understanding of dynamic responses of mud to wave loadings is
a necessity for improving fundamental scientific knowledge and developing practical
guidelines for engineering applications. However, rheological properties of muddy
seabeds appear to be complex, and depend on the physical and chemical composition
of the constituent materials, the concentration and the sea state (see e.g. McAnally
et al. 2007a,b).

At one end of the mud rheology spectrum is the elastic solid owing to the internal
microscopic structure, while at the other end is the viscous fluid mud with much
higher viscosity than that of water (Gade 1958). Naturally, researchers have applied
different models to different situations, namely elastic (e.g. Foda 1989; Wen & Liu
1995), viscous (e.g. Gade 1958; Dalrymple & Liu 1978; Liu & Chan 2007; Park,
Liu & Clark 2008), viscoelastic (e.g. MacPherson 1980; Jain & Mehta 2009; Mei
et al. 2010) or viscoplastic (e.g. Mei & Liu 1987; Chan & Liu 2009), to name a few.

However, recent advancements in rheology (e.g. Piau 2007; Cheddadi et al. 2008;
Luu & Forterre 2009; Putz & Burghelea 2009) suggest that the aforementioned
rheological models may be studied in a unified framework. In particular, Luu &
Forterre (2009) carried out impact experiments of yield-stress fluids and successfully
reproduced important features using an elasto-viscoplastic model, in which an elastic
spring is serially connected to a typical viscoplastic model. Other simpler models
listed above can be considered as subsets of the elasto-viscoplastic model. Note that
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a tensorial and three-dimensional generalization of such a model has been already
laid out by Saramito (2007, 2009).

One of the objectives of the paper is to provide further experimental evidence of
the elasto-viscoplasticity by measuring and calculating the velocity field for oscillatory
pipe flows of a yield-stress fluid. Mei & Liu (1987) and more recently Chan & Liu
(2009) investigated the response of a Bingham mud to unsteady pressure gradients,
which are induced by surface water waves. Chan & Liu (2009) showed that alternating
layers of a solid-like plug flow region and fluid-like shear flow region are possible
within a Bingham muddy seabed. While considering Stokes’ second problem of a
yield-stress fluid described by the Herschel–Bulkley model, Balmforth, Forterre &
Pouliquen (2009) also predicted the presence of the alternating layers of plug flow
and viscous shear flow. However, their experiments, using a kaolin slurry in a partially
filled oscillating rectangular box, displayed very different characteristics from those
of numerical results. Balmforth et al. (2009) speculated that the thixotropy may
be responsible for the discrepancy. While the present study has been motivated
by the recent theoretical investigations on a viscoplastic muddy seabed (e.g. Chan &
Liu 2009), we chose an aqueous Carbopol solution as a surrogate mud. Specifically, the
Carbopol solution is known to have a yield stress, without significant thixotropy (Piau
2007) as opposed to natural mud. Moreover, it is optically clear so that quantitative
flow visualization technique, e.g. particle image velocimetry (PIV), can be readily
employed. More complex behaviours of thixotropic mud are left as future study.

Individual particles of Carbopol take the form of spherical blobs that tend to swell
in water and they squeeze each other with increasing concentration (Coussot et al.
2009). Thus, small deformations of the material can be recovered elastically. Under
large enough shear stress, however, the squeezed blobs can jump from one location
to another. Hence, the aqueous Carbopol solution appears to have a yield stress
(Piau 2007). Note that the structure causing the macroscopic elastic behaviour still
remains while the material flows. Once the applied stress is removed, the repulsive
forces of the blobs quickly restore the overall structure, and there is no inherent
mechanism responsible for siginificant thixotropy. Note that this property is common
to other yield-stress fluids that are formed by microscopic repulsive forces (Coussot
et al. 2009). On the other hand, materials formed by the attractive interactions, such
as clay suspensions, could exhibit substantial hysteresis (Balmforth & Craster 2001).

In the next section (§ 2), the constitutive equations for the Carbopol solution are
first reviewed. Then a mathematical model for the pipe flows is formulated and
solved numerically in § 3. In § 4 the U-tube experimental setup is described for
oscillatory pipe flows. To validate the accuracy of the apparatus and the measuring
technique, experiments using sugar water are performed first. Excellent agreement
between experimental data and analytical solutions is achieved. Experiments are then
carried out with Carbopol solutions. In § 5 experimental data are compared with
the numerical simulations for both regularized Bingham flow model and the newly
proposed elasto-viscoplastic model. It is clear that the elasticity plays an important
role in oscillatory flows of the soft yield-stress fluid. Finally, concluding remarks are
presented in § 6.

2. Constitutive relations
The constitutive model employed in this paper can be described as the serial

combination of an elastic spring and the Bingham viscoplastic element. After
reviewing the constitutive equations, measured values of the rheological parameters
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Figure 1. Steady constitutive relations for yield-stress fluids: — · —, the Bingham model
(2.2); ——, the Papanastasiou model (2.3); – – – – –, the initial Newtonian state (2.4).

(shear modulus of elasticity, yield stress and viscosity) for an aqueous Carbopol
solution are reported herein.

2.1. The Bingham model and its regularized variation

In a simple pipe flow, the Bingham model in terms of the cylindrical coordinate reads
as follows (see figure 1):

∂u′

∂r ′ = 0, |τ ′| � τ ′
y, (2.1)

τ ′ = −
(

µ′ +
τ ′
y

|∂u′/∂r ′|

)
∂u′

∂r ′ , |τ ′| � τ ′
y, (2.2)

in which u′(r ′, t ′) is the axial velocity, r ′ is the radial coordinate, t ′ is the time
coordinate, µ′ is the dynamic viscosity of the fluid, τ ′ is the shear stress and τ ′

y is the
yield stress. This constitutive model has been extensively used in many applications.
Analytical solutions are available for simple flows (see Bird, Dai & Yarusso 1983).
However, it is often difficult to track the yield surface and the solutions can exhibit
singularities in more complex flows, especially when the rate of shear strain vanishes
(Balmforth & Craster 2001).

To avoid difficulties arising from the discontinuity in the constitutive relation,
Papanastasiou (1987) suggested a regularized version of the Bingham model (see
figure 1):

τ ′ = −
{

µ′ +
τ ′
y

|∂u′/∂r ′|

[
1 − exp
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− 1

s ′
y

∣∣∣∣∂u′

∂r ′

∣∣∣∣
)]}

∂u′

∂r ′ , (2.3)
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where s ′
y is the characteristic rate of shear strain at which the flow ‘yields’, as depicted

in figure 1. As the rate of shear strain increases (2.3) converges to (2.2), whereas with
a vanishing rate of shear strain the model approximates a highly viscous Newtonian
fluid, i.e.

τ ′ → −
(

µ′ +
τ ′
y

s ′
y

)
∂u′

∂r ′ ,
∂u′

∂r ′ → 0. (2.4)

That is to say, the regularized model (2.3) is no longer singular even when the rate
of shear strain becomes zero, while it can be arbitrarily close to the Bingham model
(2.1) and (2.2) with a sufficiently small value of s ′

y . Furthermore, this model has been
widely utilized for numerical simulations of yield-stress-fluid flows and is known to
be computationally economic and robust compared with other kinds of regularized
models such as the bi-viscosity model (see e.g. Fan, Phan-Thien & Tanner 2001).
Finally, the yield surface can be readily tracked if appropriately defined, for example,
as ∂u′/∂r ′ = ± s ′

y .

2.2. An elasto-viscoplastic extension of the regularized Bingham model

The elasto-viscoplastic model based on the regularized Bingham model (2.3) can be
written as follows:

µ′
e

G′
∂τ ′

∂t ′ + τ ′ = −µ′
e

∂u′

∂r ′ , (2.5)

in which G′ denotes the shear modulus of elasticity of the spring element and

µ′
e = µ′ +

τ ′
y

|∂u′/∂r ′|

[
1 − exp

(
− 1

s ′
y

∣∣∣∣∂u′

∂r ′

∣∣∣∣
)]

. (2.6)

Note that this model implies that the material behaves like an elastic solid before
yielding, while it becomes a linearized Maxwell viscoelastic fluid with a relaxation
time λ′ = µ′/G′ otherwise (Cheddadi et al. 2008). We also remark here that the model
(2.5) represents one of the simplest ways to add elasticity in the Bingham model and it
cannot reproduce nonlinear effects such as normal stress differences (Tanner & Walters
1998). By replacing the time derivative in (2.5) with an appropriate derivative that
admits finite deformation (Joseph 1990), one may recover a more general nonlinear
model, as suggested by Saramito (2007).

2.3. Rheological measurements of the aqueous Carbopol solution

For the present experiments, Carbopol 940 polymer (Lubrizol Advanced Materials,
Inc.) with 0.075 % concentration by weight was prepared and neutralized with sodium
hydroxide. Rheological properties of the Carbopol solution were measured using a
rheometer (Anton-Paar Physica MCR 300) with a cone geometry (CP25-4.5sn478)
and a plate. The flow curve shown in figure 2 was obtained by measuring the rate of
shear strain while varying the shear stress every one second. To estimate hysteretic
effects, the shear stress was first gradually increased to 5 Pa, then decreased to −5 Pa,
and finally increased again to zero. Some hysteresis is seen, especially when the flow
field within the gap decelerates near τ ′ = ± 5 Pa. The parameters for the regularized
Bingham model (2.3) are then found by least-squares curve fitting across the entire
data with the R-square value being 0.98, and are summarized in table 1, in which
γ is the specific gravity of the material. We remark that the model parameters can
differ widely depending on the range of data used for the curve fitting (Putz &
Burghelea 2009). As shown in the inset of figure 2, the regularized Bingham model
(2.3) shows discrepancy with the measured data for low rate of shear strain. Indeed,
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G′ τ ′
y µ′ s ′

y

(Pa) (Pa) (Pa s) (s−1) γ

5.6 2.4 2.2 × 10−1 5.7 × 10−2 1.05

Table 1. Rheological parameters for the 0.075 % Carbopol solution.
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Figure 2. Steady rheological measurements of the 0.075% Carbopol solution: �, from zero
shear stress to 5 Pa; �, from 5 Pa to −5 Pa; �, from −5 Pa to 0; ——, the fitted regularized
Bingham model (2.3). The inset is a close-up of low rate of shear strain region.

the Herschel–Bulkley model could fit the data better in this range of the rate of shear
strain (e.g. Piau 2007). Since the focus of the present study is to explore the elastic
effect of the material, we chose to use the Bingham model for its relative simplicity
in the numerical calculation presented herein.

The dependence of the shear strain on the applied shear stress is shown in figure 3,
in which the shear strain is obtained as the time integral of the rate of shear strain
shown in figure 2 and X′ denotes the particle displacement in the axial direction. As
we are interested in the solid regime with small shear strains, the data are plotted
in the log–log scale in this figure. The transition from the solid regime to the fluid
regime is seen as the gradual change in the slope of the curve (Putz & Burghelea 2009).
After fitting the data with a smoothing spline (smoothing parameter p = 0.99994) in
the linear scale, the shear modulus of elasticity is obtained as the slope at the zero
shear stress, which is 5.6 Pa (see table 1). While this procedure provides the shear
modulus at zero strain and at zero frequency, as desired, oscillatory tests have also
been carried out with different frequency (2–4 Hz) and strain amplitude (0.5–10 %)
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Figure 3. Stress–strain curve of the 0.075 % Carbopol solution with shear stress
increasing from zero to 5 Pa.

for independent comparison. The storage modulus was measured to be between 3 and
10 Pa, which is within the same order of magnitude with the shear modulus estimated
from the steady-shear measurements.

3. Theoretical formulation
3.1. The governing equation

The governing equation for uni-directional flows in a circular pipe can be written in
dimensional form as

∂u′

∂t ′ = − 1

ρ ′
∂p′

∂x ′ − 1

ρ ′r ′
∂

∂r ′ (r
′τ ′), (3.1)

in which x ′ is the axial coordinate, ρ ′ is the density of the fluid and p′ is the pressure.
Initially, both the velocity and the shear stress are zero everywhere. The flow is driven
by the pressure gradient and the no-slip condition is applied on the pipe wall.

Denoting

− 1

ρ ′
∂p′

∂x ′ = P ′f (ω′t ′), (3.2)

where f is a non-dimensionalized oscillatory function with ω′ being its frequency, the
following dimensionless variables are introduced:

u =
u′

P ′/ω′ , r =
r ′

R′ , t = ω′t ′, τ =
τ ′

G′ . (3.3)
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where R′ is the inner radius of the pipe. We use the shear modulus of elasticity G′

as the characteristic stress, expecting the important role of the elasticity in transient
flows as suggested by Cheddadi et al. (2008). The governing equation (3.1) and the
constitutive relation (2.6) and (2.5) can be expressed in terms of the dimensionless
variables as follows:

∂u

∂t
= f (t) − 1

Re We

1

r

∂

∂r
(rτ ), (3.4)

De h
∂τ

∂t
+ τ = −We h

∂u

∂r
, (3.5)

h = 1 +
Bi

|∂u/∂r |

[
1 − exp

(
−N

∣∣∣∣∂u

∂r

∣∣∣∣
)]

, (3.6)

where the Reynolds (Re), Weissenberg (We), Deborah (De) and Bingham (Bi ) numbers
and N are defined as

Re =
ρ ′ω′R′2

µ′ , (3.7)

We =
µ′

G′
P ′/ω′

R′ , (3.8)

De =
µ′

G′ ω′, (3.9)

Bi = τ ′
y

R′

µ′ (P ′/ω′)
, (3.10)

N =
P ′/ω′

s ′
yR

′ , (3.11)

respectively. We remark that the regularized Bingham model (2.3) is recovered by
dropping the time-derivative term in (3.5), and the dimensionless momentum equation,
(3.4), reduces to

∂u

∂t
= f (t) − 1

Re

1

r

∂

∂r

(
r h

∂u

∂r

)
, (3.12)

where h is given by (3.6).

3.2. Numerical simulations

To solve the system of equations (3.4)–(3.6), an iterative scheme was employed in which
the nonlinear viscosity h is calculated based on the result from the previous iteration at
each time step, while the linear operators are discretized by the implicit scheme similar
to that of Manos, Marinakis & Tsangaris (2006). In view of (2.4), h = 1+Bi N is used
as an initial guess at each time step. The iteration continues until the maximum relative
error between the respective results from the current and the previous iterations
becomes smaller than 10−6. With the parameters representing the experimental
conditions, numerical solutions converge quickly within five iterations. Also, numerical
solutions reach the periodic state before the third period of the pressure forcing.

4. Experiments
4.1. Experimental setup

Figure 4 shows a picture of the U-tube facility designed for the experiments. One
end of the U-tube is connected to a mechanically activated pneumatic piston, while
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Figure 4. The U-tube used for the experiments.

the other end is open to atmosphere. Up to about half of the vertical columns was
filled with the Carbopol solution as indicated in the figure. The U-tube is made of
acrylic circular pipes with inner diameter D′ = 2R′ = 16.8 cm, which is about four
times larger than the Stokes boundary-layer thickness based on the viscosity of the
Carbopol solution and the typical frequency of the U-tube experiments. The total
length of the horizontal section of the U-tube is l′ = 2 m. At the mid-section the
circular pipe is enclosed by a cube, which is 22 cm long. The cube was filled with
water and was used as a prism to minimize the unwelcome refraction during PIV
imaging.

With one end open to the air, the natural frequency ω′
0 of the U-tube is determined

in terms of the horizontal length l′ (Park 2009):

ω′
0 =

√
2g′

l′ , (4.1)

in which g′ denotes the gravitational acceleration. With l′ = 2 m, the natural frequency
for the system depicted in figure 4 is roughly ω′

0 ≈ 3 rad s−1.
Finally, two acoustic wave gauges (Banner Engineering S18U) were installed, one

in each vertical column, to measure the free surface elevations simultaneously. The
pressure gradient along the U-tube can then be calculated.
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4.2. Velocity field measurements

The piston was put in sinusoidal motions with ω′ ≈ ω′
0. For each experiment data

collections were initiated five minutes after the start-up of the piston so that a quasi-
steady state had been established in the system. The fluids were seeded with the
hollow glass spheres (Potters Industry 110P8) with typical diameter 11 µm and the
specific gravity 1.1. The PIV system in the DeFrees Hydraulics Laboratory at Cornell
University was employed to resolve velocity fields across the whole diameter of the
tube at the rate of 10 Hz for two minutes. The vertical resolution of the PIV data
was 0.2 mm. Detailed description about the PIV system and the analysis procedure
can be found in Park (2009).

4.3. Preliminary test with a Newtonian fluid

To ensure that the experimental set-up and assumptions in the theoretical models are
adequate, a set of experiments was first performed using sugar water of 35 % weight
concentration (ρ ′ = 1156 kg m−3, µ′ =9.1 × 10−3 Pa s).

With the sinusoidal pressure-gradient loading f (t) = eit and the constant viscosity
h = 1, the analytical solution of (3.12) is found as

u(r, t) = Re

{
ieit

(
J0(kr)

J0(k)
− 1

)}
, (4.2)

in which Re( ) means the real part of the complex-valued expression, J0 is the Bessel
function of the first kind of zeroth order and k is given as

k2 = −iRe. (4.3)

The radial profiles of dimensionless axial velocity at four different phases for the
case with P ′ = 0.167 m s−2 and ω′ = 2.927 rad s−1 are shown in figure 5. In the figure,
a stretched radial coordinate

η =
R′ − r ′
√

πδ′ (4.4)

has been used in which the Stokes boundary-layer thickness of the fluid is written as

δ′ =

√
2ν ′

ω′ , (4.5)

where ν ′ =µ′/ρ ′ is the kinematic viscosity. Note that only the region near the wall
(0 � η � 5) is presented in the figure. Very good agreement between the measured data
and the analytical solution (4.2) is observed. The flow reversal is accurately captured
by the PIV measurement. During the experiments, no significant vibration of the
system was detected and the flow was axisymmetric and axially uniform within the
field-of-view of the PIV data.

4.4. Experiments with the Carbopol solution

Four experimental cases were performed by changing the amplitude and the frequency
of the pneumatic piston of the U-tube, which are summarized in table 2. The
corresponding values of the dimensionless parameters are also shown in the table. By
visual observation, flows in the present experiments appear to be laminar, consistent
with the small Reynolds numbers.
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P ′ ω′

Case no. (m s−2) ( rad s−1) Re We De Bi N

Y1 0.103 3.786 128.5502 0.0126 0.1475 33.4656 5.7050
Y2 0.191 3.109 105.5633 0.0285 0.1211 14.8198 12.8829
Y3 0.304 3.364 114.2216 0.0419 0.1311 10.0748 18.9504
Y4 0.467 2.994 101.6586 0.0724 0.1167 5.8370 32.7090

Table 2. Experimental cases.
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Figure 5. Radial profiles of the dimensionless axial velocity for the sugar water experiments
at four different phases during the 11th period: �, PIV data; ——, the analytical solution (4.2).
(a) t/2π = 10.32, (b) t/2π = 10.50, (c) t/2π = 10.69 and (d ) t/2π = 10.97.

5. Experimental data and numerical results
5.1. Data–model comparison with numerical results using

the regularized Bingham model

In this section, we first show the comparison between experimental data for the
velocity field and those of numerical solution using the regularized Bingham model
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Figure 6. Time histories of the dimensionless axial velocity at four different radial positions
for the case Y2: �, PIV data at r =0.96; �, PIV data at r = 0.62; �, PIV data at r =0.31;
�, PIV data at r = 0; ——, the numerical solution using the regularized Bingham model
(2.3) at r = 0.96; – – – – –, the numerical solution at r = 0.62; — · —, the numerical solution at
r = 0.31; · · · · ·, the numerical solution at r = 0.

(2.3). Only the comparisons for case Y2 are shown, which are similar to other cases.
In figures 6 and 7, time histories of the velocity at different radial locations and the
snapshots of the velocity profiles are shown, respectively. Also plotted in figure 7 is
the analytical solution for a Newtonian fluid with the same viscosity as that of the
Carbopol solution (µ′ =0.2182 Pa s).

Evolution of unyielded plug flow and sheared viscous flow has been considered
the key feature of unsteady Bingham fluid flows, as pointed out by Balmforth et al.
(2009) and Chan & Liu (2009). Because of the zero-shear-stress condition imposed
along the centreline of the pipe, the numerical solution, based on the Bingham flow
model, shows the plug flow near the centre of the pipe at all times. More interestingly,
two disconnected plug flow regions are observed in the numerical solution when the
centreline velocity decelerates. One of these plug flow regions is near the centreline
and the other is close to the wall as shown in figure 7(b), which is consistent with the
semi-analytical solution of Chan & Liu (2009).

As expected, the agreement between experimental data and numerical solutions
is poor. Indeed, the effect of elasticity under unsteady motion of the yield-stress
fluid is manifested by the substantial overshooting in the centreline velocity. Since
the material is strictly rigid in the solid regime according to the traditional Bingham
model, the overshooting cannot be captured. Note that, despite the complex behaviour
of the Carbopol solution, the measured data clearly show periodicity (see figure 6).
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Figure 7. Radial profiles of the dimensionless axial velocity for the case Y2 at four different
phases during the 11th period: �, PIV data; ——, the numerical solution using the regularized
Bingham model (2.3); – – – – –, the analytical solution for a Newtonian fluid with the same
viscosity as that of the Carbopol solution. (a) t/2π = 10.44, (b) t/2π =10.59, (c) t/2π =10.74
and (d ) t/2π = 10.89.

5.2. Data–model comparison with numerical results using the elasto-viscoplastic
constitutive relation

The substantial overshooting shown in figure 7 cannot be fully explained by the
viscous effects alone. On the other hand, if the elasticity is included, the overshooting
can be accounted for, which is the characteristic of the elasto-viscoplastic model (3.5)
and (3.6). The resulting numerical solutions are compared with the experimental data
for all four cases in figures 8–11.

Overall, the data–model agreement is much better than those shown in figures 6
and 7 in which the regularized Bingham constitutive relation is used. In particular,
the overshooting in the centreline velocities and the ostensible curvatures in the radial
profiles are well captured.
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Figure 8. Radial profiles of the dimensionless axial velocity for case Y1 at four different
phases during the 11th period: �, PIV data; ——, the numerical solution using the new
rheological values. (a) t/2π =10.43, (b) t/2π =10.61, (c) t/2π = 10.79 and (d ) t/2π =10.97.

In the numerical results of velocity profiles, sharp corners are observed, indicating
the transition from solid to liquid phase. If the viscous part of the rheology strictly
follows the Bingham model, a sharp interface (the yield surface) between the purely
elastic phase and the linear viscoelastic phase occurs, and the derivatives of the
velocity and the shear stress are discontinuous across the yield surface. Even with the
regularization, if the spatial or the temporal resolution in the numerical scheme
is not high enough to capture the smoothened transition, similar discontinuity
would occur in the numerical calculation. Additional simulations with orders-of-
magnitude greater values of s ′

y indeed showed smooth velocity profiles with no such
discontinuities.

The solid–fluid transition during the flow can also be described in terms of the
deformation of the material during the flow. Three kinds of strains, i.e. the total strain
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Figure 9. Radial profiles of the dimensionless axial velocity for case Y2 at four different
phases during the 11th period: �, PIV data; ——, the numerical solution using the new
rheological values. (a) t/2π = 10.44, (b) t/2π = 10.59, (c) t/2π = 10.74 and (d ) t/2π = 10.89.

(εt ), the elastic strain (εe) and the viscous strain (εv) can be defined as follows:

εt =

∫
∂u′

∂r ′ dt, (5.1)

εe = τ ′/G′, (5.2)

εv = εt − εe. (5.3)

For example, time histories of the deformation at two different radial positions
for the case Y4 are depicted in figure 12. One can clearly see from figure 12(a)
that the material near the centre of the pipe never yields, while periodic transition
of the material state is observed near the wall. Accordingly, the elastic deformation
dominates near the centre, while the viscous contribution is more significant near
the wall. It is interesting to see that the phase difference between the elastic and the
viscous deformations near the wall is close to 90◦, as if it were simply viscoelastic.
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Figure 10. Radial profiles of the dimensionless axial velocity for case Y3 at four different
phases during the 10th period: �, PIV data; ——, the numerical solution using the new
rheological values. (a) t/2π =10.37, (b) t/2π =10.53, (c) t/2π = 10.69 and (d ) t/2π =10.85.

6. Concluding remarks
Motivated by the need to understand the dynamic behaviour of non-Newtonian

mud in the coastal environment, oscillatory pipe flows of a yield-stress fluid (an
aqueous Carbopol solution being used as the surrogate mud) in the U-tube have
been experimentally investigated. Most importantly, we have provided experimental
evidence of the significant elastic effects of the material subject to unsteady motion,
which is consistent with other recent experiments (e.g. Luu & Forterre 2009).
Furthermore, the numerical simulation using a minimal elasto-viscoplastic model with
three constant parameters successfully reproduced main features of the experimental
results. However, further improvement to the theoretical model would be required
to simulate smooth transition from solid to liquid regimes while avoiding excessive
overshooting in the centreline velocity.

We remark here that our experimental results may provide a useful framework
for the study of cohesive sediments in coastal and fluvial environments, in the sense
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Figure 11. Radial profiles of the dimensionless axial velocity for case Y4 at four different
phases during the 10th period: �, PIV data; ——, the numerical solution using the
new rheological values. (a) t/2π =10.43, (b) t/2π =10.57, (c) t/2π = 10.71 and (d ) t/2π =
10.86.

that other simpler models such as viscous, elastic, viscoelastic and viscoplastic are
subsets of the elasto-viscoplastic model employed in the present research. Of course,
various types of materials need to be examined to extend the results to the real
muds.
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Figure 12. Time histories of the strains for the case Y4. (a) The elastic strain normalized by
the critical strain (τ ′
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